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ARTICLE INFO                                       ABSTRACT 
 
 

After the data mining algorithm has concluded, the results have to be evaluated. The evaluation 
will show the used algorithm’s accuracy. The main goal of data mining is to discover hidden 
patterns in data sets. To achieve this there are different algorithms or methods. The algorithms 
have to be compared based on the work they have performed on the data sets. There are several 
statistical-based tests to verify that the differences between the methods are not due to some 
chance effect. Each machine learning technique, used in data mining has different performance in 
terms of a specific problem. The problem is associated with data set. This article will represent a 
general overview of the performance measuring techniques. 

 
 
 
 
 
 
 

 

*Corresponding author 
 

Copyright ©2017, Roumen Trifonov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 
 
 
 

 

 

 

 

INTRODUCTION 
 
The ability to classify accurately test instances is called 
prediction. There are cases when the prediction is for numeric 
values and others – for nominal values. Each case requires 
different methods. If there is a misclassification, this results in 
error. Depending on the type of the error, there is a different 
cost for the misclassification. The extracted pattern forms the 
data set via the data mining process represent a “theory” of the 
data itself (Witten, 2011). The dataset are separated into 
several parts. The use of those parts can be for training, testing 
or evaluation of the learning algorithm. Those parts can be 
rotated for the use of each particular activity. 
 
Training and testing 
 
The classifier’s performance can be measured in term of error 
rate. The classifier predicts the class of each instance. If the 
class is correctly assigned, then there is a success, but if the 
instance has been classified as incorrect class, there is an error. 
The error rate is determined by the proportion of errors made 
over the entire set of instances. The main indicator for the 
classifier’s accuracy is its future performance on the new data.  

 
If the old data was used during the learning process used to 
train the classifier, then the error rate on the old data is not a 
good indicator for the error rate on the new data. The 
performance will be optimistic if classifier, learned from the 
same training data, was used. There is a resubstitution error 
which is the error rate on the training data. It is calculated by 
resubstituting the training instances into a classifier that was 
constructed from them. It is often not reliable (Witten, 2011). 
There is a need of independent dataset, called test set, used for 
assessing the error rate, in order to predict the performance of 
the classifier on new data. The test data must not be used in 
any way to create the classifier. There are two-staged learning 
schemes – ones that determine the basic structure and ones 
used for optimization of the structure’s parameter. All require 
the data to be partitioned (Figure 1). The training data is used 
by one or more learning schemes to select the classifier. The 
validation data is used for optimizing the classifier’s 
parameters or to select a particular one. The test data is used to 
calculate the error rate of the final and optimized method. Each 
of the sets has to be chosen independently – for good 
performance in the selection and optimization stages and to 
obtain a reliable estimate of the true error rate. After that the 
test data may be bundled/returned back into the training data – 
to produce a new classifier for actual use.  
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Figure 1. Data partitioning 
 
In that way the amount of data used for generation of the 
classifier for the practice can be maximized. If large dataset is 
available, then large sample for training can be combined with 
another independent large sample for testing. The larger the 
training sample, the better the classifier. Larger test sample 
leads to more accurate error estimate. The problem is at hand 
when there is no vast supply of available data. In the majority 
of the cases there are limited amount for training, validation 
and testing. With limited data a certain amount is held for 
testing – this is the so called holdout procedure. The remainder 
is used for training and validation if possible. The conclusion 
is that for a good classifier is needed as much data as possible 
for training, but for a good error estimate is needed as much 
from the data as possible for testing (Witten, 2011). 
 
Predicting Performance 
 
The success rate equals the difference from 100 and the error 
rate. The true success rate is close to the success rate and the 
larger population in the test set results in true success rate 
closer to the success rate. The instances in the datasets are 
independent and succession of independent events that succeed 
or fail (such as coin tossing) can be described by the Bernoulli 
process. The observed success rate is: 
 

f =
s

N
 ……..(1) 

 
where p is the unknown true success, s is the success rate and 
N is the number of trails. The correlation between p and f is 
described by confidence interval – p lies in a specific interval 
with a certain specified confidence. The mean value of a single 
Bernoulli trial with success rate p is p. The variance of a single 
Bernoulli trial with success rate p is: 
 
p × (1 − p)                                                     ………………(2) 
 
With N trials that are derived from a Bernoulli trial, the 
expected success rate is as (1) and the variance is: 
 

� × �
���

�
�                                                     ……………….(3) 

 
 
For large N the distribution of this random variable approaches 
the normal distribution. For random variable X with zero mean 
value, the probability lies in the following confidence range of 
2z: 
 

Pr[−z ≤ X ≤ z] = C                                      ……………….(4) 
 
For normal distribution the values for C and their 
corresponding values for z are in tables. The confidence that X 
will be outside the range is: 
 
Pr	[X ≥ z]                                                      ………………(5) 
 
This is referred as upper tail of the distribution. [3] Due to the 
symmetric nature of the natural distribution, the probability of 
the lower tail is: 
 
Pr	[X ≤ −z]                                                    ………………(6) 
 
In the estimation of parameters there is a bias of the used 
methods. It is defined as the difference between the expected 
and estimated values. A method with zero bias is unbiased 
estimation method. But the bias is not a sufficient indicator for 
the method’s performance. There are cases in which the 
performance is low, as the bias. But the variance in them is 
high (Kohavi, 1995). 
 
Holdout method and Cross–validation 
 
Usually there is limited data for training and testing. The 
aforementioned holdout procedure reserves one amount 
(usually 1/3) for testing and the remainder (2/3) is for training. 
Some of the data may be used for validation, if it is required 
(Figure 2). 
 

 
 

Figure 2. Data partitioning for the holdout method 
 
The sets that are used are mutually exclusive (Kohavi, 1995). 
But there are cases when the sample data for training or testing 
may not be representative – which is the case in general. Then 
there is a check that can be performed – if each class in the full 
dataset is represented in the correct proportion in the training 
and the testing sets. If one class is missing from the training 
set, then the classifier cannot learn from that training set to 
classify the class. Additionally that class can be 
overrepresented in the test set, because none of its instances 
have made it into the training set. Random sampling should be 
used in order to guarantee the proper representation of each 
class in the test and training sets. This is called stratification 
and the entire method is called stratified holdout. The 
stratification provides only primitive safeguard against uneven 
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classes’ representation. Bias can be mitigated by repeating the 
process of training and testing several times with different 
random samplers. This high variability pays for the bias 
(Efron, 1997). Each iteration includes a proportion (2/3) of 
data randomly selected for training (with stratification) and the 
remainder is for testing. Then the average of all of the 
iterations’ error rates has to be calculated. This is the so called 
overall error rate – repeated holdout method of error rate 
estimation (Efron, 2011). Each test instance in classification is 
viewed as Bernoulli trial – with correct or incorrect prediction. 
The holdout estimate is a random number, depending on the 
dataset’s division in training and test sets. In random sampling, 
the k-times repetition of the holdout method leads to averaging 
the results from the runs in order to derive the estimated 
accuracy (Witten, 2011). Cross – validation includes choosing 
fixed number of folds (partitions) of data. This is a statistical 
technique. For example, if there are three numbers of folds 
available, then the dataset has to be separated into three 
approximately equal parts (Figure 3). In each turn one partition 
is used for testing and the remainder is used for training. On a 
rotating principle 1/3 of the data is used for testing and 2/3 is 
used for training. There will be three repetitions in total, so 
that each partition is used for testing one time – threefold 
cross–validation. If there is stratification – this procedure will 
be called stratified threefold cross–validation. 
 

 
 

Figure 3. Threefold cross-validation 
 

Standard way of error rate prediction of a learning technique 
with a fixed data sample is the use of stratified tenfold cross-
validation (Figure 4). In it the data is separated into ten 
randomly divided parts (in which each class is approximately 
represented in the same proportion as in the full dataset). 9/10 
parts are for training of the learning scheme. 1/10 part is hold 
out in each turn. The error rate is calculated on the holdout set. 
The learning procedure is repeated ten times on different 
training set (each set has a lot in common with the others). The 
ten error estimates are used for calculating the overall error 
estimate (Witten, 2011). 
 
Practice/test and theory show that ten is the best number of 
folds to get best error estimate. Albeit there is still a debate, 
ten has been affirmed as a standard in the practice. Tests show 
that stratification slightly improves the results. The ten folds 
do not have to be exact. Fivefold or twentyfold cross-
validations are also good. They show lower variance, but 
higher bias for some cases (Efron, 1997) Single tenfold cross-
validation might not be enough to produce a reliable error 
estimate – different tenfold cross-validation experiments with 
the same learning scheme and dataset often produce different 
results (due to the effect of random variation in the folds 
selection). The use of stratification reduces the variation, but 
does not eliminate it. Standard approach for accuracy for the 
error estimate is the repetition of the tenfold cross-validation 
process ten times. After that the result have to be averaged, but 

one hundred times invocation/execution of the learning 
algorithm on datasets with size 9/10 times of the original 
dataset’s size is computational intensive. 
 

Leave-one-out Cross-validation 
 

This is a type of n-fold cross-validation, where n is the number 
of instances in the dataset (Figure 5). One instance is left out in 
each turn. The remaining is used for training the learning 
scheme. By the correctness on the remaining instances can be 
judged for the algorithms accuracy – one for success and zero 
for failure. 
 

 
 

Figure 4. Tenfold cross-validation 

 

 
 

Figure 5. Leave-one-out cross-validation 

 
The results for the n judgements (one for each member of the 
dataset) are averaged to provide the final estimate. Each case 
includes the greatest possible amount of data for training. This 
increases the chance of accurate classifier. This procedure is 
deterministic, meaning no random sampling is involved. The 
same result will be outputted in each repetition of the whole 
procedure. The procedure has to be repeated n times for large 
datasets, thus requiring high computational cost. It is good for 
small datasets, because it squeezes the maximum out of it and 
retrieves an accurate estimate. It cannot be stratified and 
guarantees nonstratified example, because stratification 
includes retrieving correct proportion of examples in each 
class into the test set and therefore impossible when the test set 
contains only single example. One possible scenario includes 
random dataset with exactly the same number of instances of 
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each two classes. The best prediction will be with error rate of 
50%. But in each fold in leave-one-out, the opposite class to 
the test instance is in the majority and therefore the predictions 
will be incorrect, leading to error estimate of 100% (Witten, 
2011). This method is reasonable unbiased, but with high 
variability in some cases (Efron, 1997). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Bootstrap 
 
This is estimation method, based on the statistical procedure of 
sampling with replacement. The samples are called bootstrap 
samples. In the aforementioned methods, when a sample is 
taken out of a test or training set, it is without a replacement. 
Once selected, that instance cannot be reselected again. 
Bootstrap incorporates the idea of sampling the dataset with 
replacement to form the training set. In its nature, the bootstrap 
procedure represents a version of the cross-validation methods. 
(Efron, 1997). This is called 0.632 bootstrap and is the 
principal example of the bootstrap family algorithms. Dataset 
of n instances is sampled n times with replacement, providing 
another dataset of n instances. Due to repetition of some 
instances in the second dataset, some instances in the original 
dataset have not been picked and they are used as test 
instances. The probability of picking one instance is 1/n. The 
probability of not picking instance each time is 1 – 1/n. There 
are n picking opportunities: 
 

�1 −
�

�
�

�

≈ ��� = 0,368                          ………………….(7) 

 
This is the chance of a particular instance not being picked at 
all. For large datasets the test set will contain approximately 
36.8% of the instances, meaning that the training set will 
contain 63.2% of the instances, hence the name 0.632 
bootstrap. Some instances will be repeated in the training set 
and they will bring the total size to n (the size of the original 
dataset). The training set contains only 63% of the instances, 
so this will provide a pessimistic estimate of the true error rate, 
compared to the 90% in the tenfold cross-validation. For 
compensation the test-set error rate can be combined with the 
resubstitution error rate on the instances in the training set. The 
resubstitution figure provides optimistic estimate of the true 

error and should not be used as an error figure on its own. But 
the bootstrap combines it with the test error rate to produce the 
final estimate is: 
 

e = 0.632 × e����	��������� + 0.368 × e��������	���������   …(8) 
 

After that the complete bootstrap procedure is repeated several 
times with different replacement samples for the training set.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then the results have to be averaged (Figure 6). By selecting n 
numbers (in the diagram n = 20) of random examples with 
replacement (equal to the number of elements in the training 
set) for each one of the m samples, m datasets are produced. 
Those datasets are used for training m classifiers. Each 
classifier can be associated with test observation (hypothesis). 
The observations correspond to predictions. Each prediction is 
aggregated by voting to a final prediction. The bootstrap 
procedure is best for small datasets, due to the computing-
consuming repetitions (Witten, 2011). Disadvantage is at hand 
in one artificial case: random dataset with two classes of equal 
size, meaning 50% true error rate for any prediction rule, but a 
learning scheme that memorized the training set will provide 
perfect resubstitution score of 100%. In this case the estimate 
of the training instances will be equal to 0 and the bootstrap 
will mix that with a weight of 0.368 to give the following 
overall estimate: 
 
e = 0.632 × 50% + 0.368 × 0% = 31.6% ………(2) 
 
which is misleadingly optimistic (Witten, 2011). The bootstrap 
method fails in the cases of classifiers with full level of 
memorization with random datasets (Kohavi, 1995). 
 
Conclusion 
 
While the data volumes are constantly increasing, the use of 
raw data is inapplicable. Data has to be preprocessed, in order 
to provide adequate performance for the classification 
algorithms in the field of data mining. Using statistical 
approaches, the efficiency of the performance of the 
algorithms can be determined in a satisfactory degree. The 
holdout method is the simplest variant of cross-validation. Its 
low computational time on one side is downsized by the 

 
 

Figure 6. 0.632 Bootstrap 
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highly-shifted evaluations. The k-fold cross-validation 
improves the holdout method, because the data 
division/partition matters to a limited degree. Each data set is 
used in a test one time and k-1 times for training. Rotating 
dataset for training and testing reaffirms the algorithms 
accuracy to a degree with a specific certainty. This method’s 
disadvantage is that the classification algorithm has to be 
executed n times, meaning that it will take n times much more 
computations to produce an evaluation. The bootstrap method 
is efficient in small volume datasets with low level of 
memorization classifiers.  
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