

ORIGINAL RESEARCH ARTICLE

DEVELOPMENT OF SOFTWARE FOR QUALITATIVE AND COMPARATIVE PERFORMANCE
ANALYSIS BETWEEN SOME DATA ORDINATION ALGORITHMS

1,2Ricardo Silva Parente, 1,2Ítalo Rodrigo Soares Silva, 2Davi Samuel Dias Maia, 1,2Paulo Oliveira
Siqueira, 1,*Jorge de Almeida Brito Júnior, 1Manoel Henrique Reis Nascimento, 1Alyson de Jesus

dos Santos and Héber Pinheiro Martins2

1Research Department, Institute of Technology and Education Galileo of the Amazon (ITEGAM), Manaus,
Amazonas, Brazil

2Student, Paulista University (UNIP), Manaus, Amazonas, Brazil.

ARTICLE INFO ABSTRACT

Ordination can be obtained by common means such as the logical reasoning of a human being,
and also by computational means using algorithms to sort the desired data in a predefined order,
the present research aims to show the results of the ordering of integers through algorithms, such
as Insertionsort, Combsort, Quicksort and Mergesort, through an application developed in the
Java programming language, where a performance comparison of each algorithm will be
performed, showing not only its performance measured in milliseconds but also aspects
fundamental as their operation and the ordering logic employed by them, the results show
comparisons of different views according to the complexity worked in each scenario.

Copyright © 2019, Ricardo Silva Parente et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Data ordering consists of a set of methods and techniques for
ordering a complete or partial sequence of data or information.
Ordination can be obtained by common means such as the
logical reasoning of a human being, and also by computational
means using algorithms to sort the desired data in a predefined
order. There is a great diversity of sorting algorithms, each
using a specific logic, and in some cases sorting algorithms
have similar sort ordering techniques, but their performance
often varies from one technique to another. This variation of
performance measured in time, can impact in obtaining a
specific result, because in many cases an algorithm that takes
more time to make the ordering, has a high probability of
being inappropriate for a certain task.

*Corresponding author: Jorge de Almeida Brito Júnior,
Research Department, Institute of Technology and Education Galileo
of the Amazon (ITEGAM), Manaus, Amazonas, Brazil.

Therefore, one must choose a method of ordering appropriate
to the type of work, and order it in the expected time.
Measuring the time that each algorithm takes to order a same
set of elements, it is a task of paramount importance in the
computer industry, because depending on the system in which
it is applied, its performance will make a difference. In this
research we will present the ordering algorithms: Insertionsort,
Combsort, Quicksort and Mergesort, showing not only their
performance measured in milliseconds, but also fundamental
aspects such as their operation and the ordering logic
employed by them, capturing the times through a application
developed in the Java programming language, where integer
type vectors will be ordered. In addition, the algorithms
Insertion sort and Combsort are considered simple ordering
algorithms, usually used in the ordering of small-sized vectors,
are algorithms of easy understanding and application. Their
complexity on average is Θ (n²), and in some situations they
reach Θ (n) in the best cases.

ISSN: 2230-9926

International Journal of Development Research
Vol. 09, Issue, 06, pp. 28405-28415, June, 2019

Article History:

Received 28th March, 2019
Received in revised form
09th April, 2019
Accepted 14th May, 2019
Published online 30th June, 2019

Available online at http://www.journalijdr.com

Key Words:

Data ordering,
Computational complexity,
Algorithms, Qualitative analysis.

Citation: Ricardo Silva Parente, Ítalo Rodrigo Soares Silva, Davi Samuel Dias Maia, Paulo Oliveira Siqueira, Jorge de Almeida Brito Júnior,
Manoel Henrique Reis Nascimento, Alyson de Jesus dos Santos and Héber Pinheiro Martins. 2019. “Development of software for qualitative and
comparative performance analysis between some data ordination algorithms”, International Journal of Development Research, 09, (05), 28405-28415.

 RESEARCH ARTICLE OPEN ACCESS

Quicksort and Mergesort are considered sophisticated or
efficient sorting methods, because they have a short ordering
time. They have a somewhat greater complexity in detail, but
their greatest asset is due to a much smaller number of
comparisons. They are usually used to order a higher amount
of data, with their complexities on average Θ (n log n).
Analyzing and comparing sorting algorithms: Insertionsort,
Combsort, Quicksort and Mergesort in a Java programming
language in order to report performance results using mass
data masses is the objective of this article, and it is necessary
to analyze the ordering methods as well as performance in the
application developed for this purpose.

MATERIALS AND METHODS

Ordination of data: The ordering of data consists of putting
elements be they information, data and others in a predefined
order, complementing Laureano says that "ordering is the
process of arranging a set of similar information in a growing
or decreasing order. Specifically, given an ordered list i of n
elements, then: i1 <= i <= ... <= In [Laureano, 2012]".
According to Da Silva Nascimento and Mozzaquatro: "There
are several ways to implement a sorting algorithm, but there is
one, but how much need each use. Each algorithm solves a
common problem that is the ordering, but as each one behaves
in a different way we must understand how each one works so
that we know which one to use to solve a certain problem.
Their use allows us to solve a problem dynamically, that is,
after implementing an algorithm to order a vector in ascending
order, for example, it must be functional to any vector
regardless of the quantity of values or the way in which these
values are arranged in the initial situation in which they are in
the vector [Da Silva Nascimento, 2016] ".

When ordering something we have input data (which are still
out of order), and output data (data already ordered), in the
middle of this process methods and procedures are used in
order to obtain an ordered sequence. As in the example quoted
below from Cormem et al. [2002]:

 Input: A sequence of n numbers (a1, a2, ..., an).
 Output: A permutation (reordering) (a'1, a'2, ..., a'n)

of the input sequence, such that a'1 ≤ a'2 ≤ ... ≤ a'n
 According to Da Silva Nascimento and Mozza

Quatro, sorting methods are classified into two main
groups: internal and external sorting [Da Silva

Nascimento, 2016].

 Internal Ordering: These are methods that do not
require a secondary memory for the process; ordering
is done in the main memory of the computer.

 External Sort: When the file to be sorted does not fit
into main memory and therefore has to be stored on
tape or disk.

 The main difference between the two groups,
according to Oliveira, is that in the internal ordering
method any record can be accessed directly, whereas
in the external method it is necessary to do access in
blocks [Oliveira, 2002].

Ordination Algorithms: In Laureano's line of thinking the
ordering algorithms follow a programming logic, they are able
to order a set of elements that appear outside a specific order
type - in other words, the elements of the set when they go
through the method of ordering the algorithm are placed in a

complete or partial order, the numerical and lexicographic
orders being the most used [Laureano, 2012]. According to
Viana in data ordering algorithms, there are simple sorting
methods and efficient sorting methods. The simple methods
are easy to apply and understand, since efficient methods are
more sophisticated with a smarter logic, and it aims above all
performance [Viana, 2016]. There is a great variety of sorting
algorithms, used for several sorts of sorts, a crucial factor to
qualify is the time spent for sorting already said by Celes and
Rangel [Celes, 2002]. In this academic work four sorting
algorithms will be approached, for ordering integer vectors,
among the chosen algorithms are: InsertionSort, CombSort,
QuickSort and MergeSort.

Insertion Sort: Following the Laureano's thinking, the
ordering algorithm InsertionSort is considered as a very simple
algorithm, its implementation as well as its understanding are
of easy applicability and assimilation [Laureano, 2012]. This
type of sorting works very well for small-order sorting
solutions, one of the most efficient of its kind, which is Simple
Sorting Methods, it uses a technique similar to human
reasoning, so that,"The insertion algorithm works the same
way many people order cards in a card game such as poker.
One of the characteristics of this algorithm is the smallest
number of exchanges and comparisons if the list is ordered
(partially) [Laureano, 2012]". Where the player with a set of
cards in his hand receives a new card, it is up to him to
compare this new card to insert the card next to the others in
the correct position, as he receives new cards, the player must
make new comparisons to insert the cards. new cards in the
hand of cards that are already sorted, until no more new cards
are added for inclusion. The performance of InsertionSort is
worthy of a simple sorting method, but it can be more effective
than BubbleSort and SelectionSort, which are in the same
category according to tests performed by the authors
themselves.

Comb Sort

According to Burke CombSort is a simple ordering algorithm,
based on the principle of exchanges, it was initially developed
by Wlodzimierz Dobosiewicz in 1980. However this sort of
ordering was forgotten for a long time, until in April 1991 it
was remembered again by Stephen Laccy and Richard Box in
an article published in Byte magazine [Burke, 2014].
Following the Burke's writing, the CombSort algorithm is
proposed to be an improvement to the BubbleSort sorting
algorithm, since it helps to eliminate the slowness at the end of
arrays that are very common [Burke, 2014]. In many vectors
there is often a low-order disordered element at the end of the
vector, this brings a large time bottleneck in ordering using
simpler ordering methods. The same author continues to point
out that using this sort technique the vector is scanned in an
increasing manner, choosing two elements for comparison,
which are separated by a space (jump), this space is called
GAP, if the value on the right is less than the value on the left,
these elements change their positions, this is done repeatedly
until the sequence is ordered [Burke, 2014]. BubbleSort also
presents this distance between the elements chosen for
comparison, however it only equals 1, already in Combsort
this distance can be much greater, thus improving the time to
order the vector, it also uses a shrink factor that is a constant
equivalent to 1.24 used to make the ordering computations of
this algorithm, Burke concludes in his paper [Burke, 2014].

28406 Ricardo Silva Parente et al. Development of software for qualitative and comparative performance analysis
 between some data ordination algorithms

Quick Sort: The Quick Sort method makes use of the division
and conquest strategy, as its own name says it is a fast and
very efficient sort algorithm says Laureano [Laureano, 2012].
This algorithm consumes a time proportional to Θ (n log n) in
average and proportional to Θ (n²) in the worst case, says
Cormem [2002]. According to Laureano:

"The algorithm, published by Professor C.A.R. Hoare in 1962,
is based on the simple idea of dividing a vector (o-its list to be
ordered) into two sub-vectors, so that all elements of the first
vector are smaller or equal to all elements of the second vector.
Once the division is established, the problem will be solved,
since by recursively applying the same technique to each of the
sub-vectors, the vector will be ordered by obtaining a sub-
vector of only 1 element” [Laureano, 2012]. The process of
dividing, conquering and combining QuickSort can be
extremely efficient if the central element (pivot) to be chosen
represents a median value of the set of elements, if this
happens, just after positioning the pivot, there will remain only
two sub-vectors to be ordered, both with the number of
elements reduced by half, in relation to the original vector,
explains Celes and Rangel on the operation of the algorithm
QuickSort [Celes, 2002].

Narrative description of the QuickSort Algorithm according to
Laureano [Laureano, 2012]:

 Choose any element (a pivot) of the set to be ordered.
 Remove the pivot from the set of elements, and

partition the remaining elements of the set into 2
distinct sequences, so that one has a subset directly to
the pivot and one to the left of the pivot.

 The left subset should have elements smaller or equal
to the pivot, while the rightmost subset will contain
elements greater than or equal to the pivot.

Finally, the algorithm is applied again in the subsets formed.

Merge Sort

Continuing with Laureano, he notes that just like QuickSort
Mergesort is a sorting algorithm that makes use of division and
conquest, this method divides the input vector into two halves,
then the divisions occur until all the elements to be ordered are
separated from each other, in the sequence the elements
(subdivisions) are ordered by recursion, and are gradually
joined until the vector is completely ordered, that is the
conquest, soon after we have the junction of all sub problems
solved to form the vector ordered [Laureano, 2012]. The
authors Vargas and Garcia explain that because of the constant
divisions of the vector for the ordering by recursion, the luck
Merge has a use of memory considerably high, being classified
as little efficient in some circumstances. On average, its
ordering time is Θ (n log n) and in the worst case we also have
Θ (n log n), each part of the MergeSort order has a specific
time [Vargas, 2004]. According to Laureano, the Narrative
description of the Mergesort Algorithm is [Laureano, 2012]:

 Divide the vector into small subsequences, where first
the vector of size n will be divided into two parts, these
parts will be divided again into two other parts, this is
done until the elements of the vector are all separated;

 2. In this step conquest happens, where recursively
there is the classification of the parts previously
divided, so that they are ordered;

In the last step, the union of the ordered sub-vectors occurs,
which is again ordered for this junction, until it forms the
ordered final vector.

Complexity algorithms: According to Alves et al., The
interval arithmetic developed by Moore aims to control errors
of the results of the numerical comparison through the
manipulation and operations with intervals, in a way analogous
to the work done by algorithms that model iterative techniques
of loops where the level of processing defines the context of
complexity [Alves, 2018]. According to Piqueira this concept
of computational complexity comes from the time of the
Turing Machine where the operations of the head and the tape
are defined by a table of instructions {I1, I2, ..., In} called the
action table [Piqueira, 2016]. The forms of interactions are
present in several computational systems and their study is
necessary since the performance in information response
depends on a good planning of the construction of a software
or product. The concept of computational complexity,
understood as the number of operations required for the
execution of a program, that is, for the execution of a set of
algorithms according to Desurvire [2009]. The model shown in
the figure above allows to understand how the turing machine
works, it is observed that there is a sequential iteration that
depending on the size of the tape there will be a great loss in
performance in reading and writing since at that time was the
ideal model , computational architectures are now based on the
Von Newman model, yet the complexity becomes persistent,
programming techniques become unfeasible when alarming
results are obtained mathematically.

For White and Fuchigami: "The traditional programming
problem in flowshop production system occurs in a set of n
tasks that must be processed, in the same sequence, in m
machines. When the order of processing on all machines is the
same, we have the flowshop production environment
permutacional, in which the number of possible schedules for
n tasks is n! [Branco, 2017] ". In the model elaborated by
Branco and Fuchigami is exemplified a Flowshop with four
machines and four tasks. The problem is to get a task sequence
that optimizes a given measure of performance. With this, the
concept of measures of computational complexity arises, being
a set of related complexity problems taking as factors the type
of problem, the computation model and the resources.

According to Goldreich: Limiting the computation time
above by some concrete function f (n) often produces
complexity classes that depend on the model of the chosen
machine. For example, the language {xx | x is any binary
sequence} can be solved in linear time on a multi-tap Turing
machine, but necessarily requires quadratic time in the single-
tape Turing machine model. If we allow variations in
polynomial time running, the Cobham-Edmonds thesis states
that "the complexities of time in any two reasonable and
general computational models are polynomially related."

According to Pinheiro et al. "To think under the lens of
Complexity Theory is to respect the various dimensions of the
phenomenon studied, it is to oppose competing and
antagonistic conceptions aiming at complementarity through a
movement that associates them." Vilela comments on the
concept of complexity classes so that A class P plays an
important role in complexity theory because it is invariant in
all computing models that are polynomially equivalent to the
deterministic Turing machine of a single tape and corresponds

28407 International Journal of Development Research, Vol. 09, Issue, 06, pp. 28405-28415, June, 2019

approximately to the class of problems that are solved
realistically in a computer [Vilela, 2016]. Thus complexity
theory deals with the adversities of three-level computing
commonly known as measures of complexity: best case, worst
case, and average case. These concepts will be approached in
the course of the methodology according to the use of the
ordering algorithms.

Classes of ordination algorithms: The software was
developed in Java language using Netbeans IDE 8.2. 5 classes
were used, the first called Insertion Sort, contains methods
such as ordering the vector, and that returns the vector already
ordered in a String, while one method orders, the other just
runs through the vector in order to get its values and adds it in
a String. The second class called Comb Sort also has two
methods that do the same as the first class mentioned above,
the difference being that while the first uses the sorting
algorithm known as Insertion Sort the second uses the
CombSort sorting technique to sort the vectors that will be
passed as an argument. The third class named MergeSort,
which also gets the name of its respective sorting algorithm,
sorts the numbers that are in the vectors initially disordered,
has three methods, due to its greater complexity to sort the
data. The fourth class is Quick Sort, has five methods because
it is the fastest technique used in this work and also the most
complex compared to others, the methods that this class has
the most are only to order the vectors, four methods are used
that combined serve to sort the data that will be passed through
a vector as an argument. The fifth class is the class APS that
extends the class JFrame, is the class that will shape the
software, ie the final view of the application where the results
are shown, with the inclusion of buttons, tables and text areas
where the vectors are shown.

Generation of data for ordination: Initially, four vectors of
different sizes are created in the constructor of the class that
inherits JFrame, where they are randomly filled within a loop
of repetition, numbers are drawn in a range of 0 to 100,000
thousand using an already existing method in the Java
language of the Randon Class, identified by nextInt (), this
process is repeated for the four vectors. The process of
populating the vectors is triggered by a click on the "show"
button, which is disabled after the click, this button basically
serves to add to the vectors the random values, the unordered
vectors will appear just above the button, since the method that
returns the unordered vector is called and played inside a
component called JTextPane, this is done for the four vectors,
the "sort" buttons start disabled and are enabled after the
button that shows the unordered vectors is deactivated. Four
replicate loops known as for were used to fill in the vectors,
one for each vector.

Data ordination process: For each ordering algorithm, a class
of its own was created, in order to leave the code following the
patterns of the orientation to objects, all these classes have
methods to order the vectors, knowing that these own methods
to order the vectors return a set of characters (String), whose
value is the time spent for ordination. So the sort method is
called when the "sort" button is clicked (the button is disabled
after the click), the time spent for sorting is saved in a variable
to be used later, then another method is called this takes the
vector already ordered and returns a String to be displayed
next to the "sort" button, this process is done for each vector
and all the algorithms of sorting of the software.

Comparative Performance of the Ordination Algorithms

A table shows the performance results of each algorithm and
its respective vectors. In the first column is placed the size of
the vectors, in a way to identify the vectors that are being
related to each time, in the other columns is placed the
variables that will receive the ordering time of each vector and
algorithm. The whole process is triggered when the "Show
Results" button is clicked, a detail that can not be left out is
that the button to show algorithm performance results is
enabled after all sort buttons are clicked. Once the button is
clicked the method to display the table is called and executed.

RESULTS AND DISCUSSION

Based on the results obtained in the software developed by the
group, it was possible to perform an analysis of the
performance of each algorithm, and all the vectors were filled
in a totally random way, where such results were generated
using a computer with the following specifications:

 Processor - Intel (R) Core (TM) i3-5005U CPU 2.00
GHz.

 Memory RAM - 4.00 GB.
 Operating System - Windows 10 64-bit.

Insertion Sort had the worst performance of the four
algorithms used for all vector sizes, the least effective being
performance, because it is a simple ordering algorithm, the
result found was already expected by the group. Despite the
slowness in data organization this method becomes useful
when the few data to be ordered due to its easy
implementation. Merge Sort did not perform well in the tests,
due to the use of a division and recursion method, making the
comparisons made a lot and consequently the performance of
the algorithm was not good for vectors organized in a totally
random way, being in third place in the ranking ranking in
terms of performance of the algorithms used, earning only
from insertion Sort. The Comb Sort, even though it was
considered a simple algorithm, obtained a very encouraging
result for the vectors used, being the second best in the
analysis of the group. This had an approximate organization of
2.7 times slower than the fastest of the algorithms evaluated by
the group, if considered the vector of size 40000 (forty
thousand), comparing the time related to the vector of 10,000
(ten thousand) positions, the comb Sort further improves its
performance to only about 1.49 times slower. And to the
surprise of the authors of this work, the algorithm in ordering
the vector of size equal to 20,000 (twenty thousand) indexes
was faster than quick Sort. The one that had the best
performance in all sizes of vectors tested was quick Sort, could
not be another, as the name itself says it is very fast, achieved
surprising results and was ranked first in the ranking formed,
despite the result already be expected by the team, managed to
surprise positively. To get a sense of the stark difference
between the slower and faster algorithms tested by the group,
the insertion Sort was almost 52 (fifty-two) times slower than
the faster of the evaluated methods if considering the vector
size 40,000 (forty thousand) and approximately 68 (sixty-
eight) times slower compared to the vector of size 10,000 (ten
thousand). The results were satisfactory and very consistent, a
special highlight for comb Sort, which, even though it was a
simple sort algorithm, managed to get close enough to the
organization time of quick Sort.

28408 Ricardo Silva Parente et al. Development of software for qualitative and comparative performance analysis
 between some data ordination algorithms

 Source: Authors, (2019).

28409 International Journal of Development Research,

Source: Piqueira, (2016) [10].

Fig. 1. Turing Machine Model

Source: White and Fuchigami, (2017) [12].

Fig. 2. FlowShop Model

Source: Authors, (2019).

Fig. 3. InsertionSort class

International Journal of Development Research, Vol. 09, Issue, 06, pp. 28405-28415, June,

June, 2019

28410 Ricardo Silva Parente et al.

Source: Authors, (2019).

Fig. 4. CombSort Class

Source: Authors, (2019).

Fig. 5. MergeSort Class

et al. Development of software for qualitative and comparative performance
 between some data ordination algorithms

of software for qualitative and comparative performance analysis

28411 International Journal of Development Research,

Source: Authors, (2019).

Fig. 6. Quick Sort Class

Source: Authors, (2019).

Fig. 7. APS Class

International Journal of Development Research, Vol. 09, Issue, 06, pp. 28405-28415, June,

June, 2019

28412 Ricardo Silva Parente et al.

Source: Authors, (2019).

Fig. 8. Unordered vectors

Source: Authors, (2019).

Fig. 9. Filling the vectors

et al. Development of software for qualitative and comparative performance
 between some data ordination algorithms

of software for qualitative and comparative performance analysis

Source: Authors, (2019).

Fig. 10. Ordered vectors

28413 International Journal of Development Research, Vol. 09, Issue, 06, pp. 28405-28415, June, 2019

Source: Authors, (2019).

Fig. 12. Table of results

Source: Authors, (2019).

Fig. 13. Result table method

Source: Authors, (2019).

Fig. 14. Table of results

28414 Ricardo Silva Parente et al. Development of software for qualitative and comparative performance analysis
 between some data ordination algorithms

Next we have a graph of the four algorithms evaluated, it is
important to make explicit that some values were rounded, but
this does not change much the graph and the dimension of the
obtained times, because the evaluation of the group has already
been made in relation to the various tests done with the data,
where the time of each test changes, however the percentage
variation between the organization of the data by the
algorithms varies very little.

Final considerations: With all the results at hand and all
analysis done on top of them, it is concluded that the
insertionSort sorting algorithm can be used for sorting with
small amounts of data, since the time of the ordering process
with small quantities is negligible. In turn mergesort did not
obtain satisfactory results in our tests, although this is
considered a sophisticated algorithm, this is due to the several
operations of separating the elements of the vectors, leaving it
somewhat slow and consuming a lot of computer memory. The
quicksort method is great for ordering very high amounts,
since it organizes the data very quickly. It is inevitable to fail
to comment on the optimal performance of the combSort
algorithm, which is classified as simple but of incredible
performance. The software had good and satisfactory results to
the point of view of the group, where it brought a comparative
of the methods used and easy assimilation by those who see
the table generated by the application.

Acknowledgement

The Paulista University - UNIP and the Galileo Institute of
Technology and Education of the Amazon - ITEGAM for
technical and scientific support and collaboration.

REFERENCES

Alves, Rafael Fogliato et al., 2018. Análise DE Complexidade

Computacional DOS Métodos DE Integração
Intervalar. Anais do Salão Internacional de Ensino,
Pesquisa e Extensão, v. 9, n. 3.

Branco, Fábio José Ceron; Fuchigami, 2017. Helio Yochihiro.
Métodos de alto rendimento e baixa complexidade em
flowshop. Revista GEPROS, v. 12, n. 4, p. 32.

Burke. 2014. Comb sort algorithm. Programering, página da
web 27 novembro.

Celes, W.; Rangel, J. L. 2002. Apostila de Estrutura de Dados.
Rio de Janeiro: PUC-RIO - Curso de Engenharia.

Cormem, T. H. et al. 2002. Algoritmos Teoria e Prática,
Tradução da 2º Edição Americana. Tradução de
Vandenberg D. de Souza. 2º. ed. Rio de Janeiro: Elsevier.

Da Silva Nascimento, Jonathan; Mozzaquatro, 2016. Patricia
Mariotto; Antoniazzi, Rodrigo Luiz. Análise e Comparação
de Algoritmos Implementados em Java. Simpósio de
Pesquisa e Desenvolvimento em Computação, v. 1, n. 1.

Desurvire, E. 2009. Classical and Quantum Information
Theory. Cambridge: Cambridge University Press.

Goldreich, Oded. 2008. Computational Complexity: A
Conceptual Perspective, Cambridge University Press.

Laureano, M. A. P. 2012. Estrutura de Dados com Algoritmos
e C. Curitiba: Brasport.

Oliveira, Á. B. 2002. Métodos de Ordenação Interna. Visual
Book, São Paulo, 1st edição.

Pinheiro, Liliane Vieira et al., 2017. O desenvolvimento de
coleções em bibliotecas universitárias na perspectiva dos
desafios da pós-modernidade: diretrizes sob o olhar da
teoria da complexidade e da análise do domínio.

Piqueira, José Roberto Castilho. 2016. Complexidade
computacional e medida da informação: caminhos de
Turing e Shannon. Estudos Avançados, v. 30, n. 87, p. 339-
344.

Vargas, R. B., Garcia, B. B. 2004. Aula 10.2: Dividir e
Conquistar - Mergesort. Universidade Federal do Espirito
Santo. ISSN INF 02779 Análise de Algoritmos.

Viana, D. 2016. Conheça os principais algoritmos de
ordenação. Treina Web Blog, 26 novembro.

Vilela, Bruno Azevedo. 2016. Análise da complexidade de
espaço para um algoritmo de K (1)-Validade.

28415 International Journal of Development Research, Vol. 09, Issue, 06, pp. 28405-28415, June, 2019
