

ISSN: 2230-9926

RESEARCH ARTICLE

Available online at http://www.journalijdr.com

Vol. 12, Issue, 04, pp. 55117-55119, April, 2022 https://doi.org/10.37118/ijdr.24276.04.2022

OPEN ACCESS

PARKINSON'S DISEASE DETECTION USING MACHINE LEARNING

*Shikha Singh, Nikita Shingade, Priti Sarote, Deepti Yelale and Nihar Ranjan

Information Technology Department, JSPM's RSCOE, Pune

ARTICLE INFO	ABSTRACT
Article History: Received 17 th January, 2022 Received in revised form 27 th February, 2022 Accepted 20 th March, 2022 Published online 22 nd April, 2022 Key Words:	Parkinson's disease is a condition in which dopamine-producing cells in the brain die. Parkinson's disease symptoms appear as the amount of dopamine in the brain diminishes. Parkinson's disease is a slow-progressing condition with symptoms such as tremors in the hands, arms, legs, chin, and face that get worse with time. People may have trouble walking and speaking as the condition advances. Although there is no cure for Parkinson's disease, the symptoms of the disease can be alleviated with the use of some medications. There are a number of common symptoms that may or may not suggest that the patient has Parkinson's disease. In this study, a new rating system was developed to aid in determining the severity of Parkinson's disease. However, a person with
Parkinson Disease, Ensemble Learning, Boosting *Corresponding author: Shikha Singh	identical symptoms does not necessarily have Parkinson's disease. Because Parkinson's disease is an unsolved problem, the study focuses. On relevant aspects, medicines, and common approaches used to identify or assess the disease. Patients with Parkinson's disease often experience voice difficulties in the early stages of the condition. As a result, recent investigations for the identification of Parkinson's disease have focused on diagnosis systems based on voice disturbances.

Copyright©2022, Shikha Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Shikha Singh, Nikita Shingade, Priti Sarote, Deepti Yelale and Nihar Ranjan. "Parkinson's disease detection using machine learning", International Journal of Development Research, 12, (04), 55117-55119.

INTRODUCTION

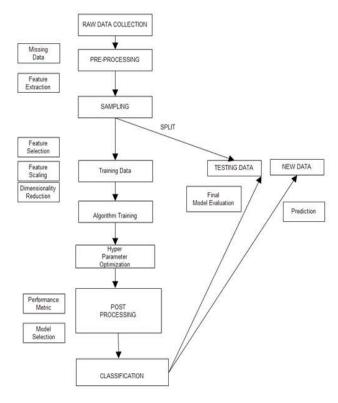
How does machine learning function, and what does it entail? Machine learning (ML) is an artificial intelligence (AI) technique that enables software to improve prediction accuracy without being particularly designed to do so. Machine learning algorithms use historical data as input to forecast newly introduced output values.Parkinson's disease (PD) can be difficult to diagnose, especially in its early stages, because the symptoms of other neurologic conditions might be confusing. Motor signs such as bradykinesia (slowed movement and loss of spontaneous movement), muscle rigidity, a resting tremor, and postural instability are used to make the current diagnosis (balance issues). After Alzheimer's disease, Parkinson's disease (PD) is the second most common neurological disease .In general, there are two types of PD symptoms: motor and non-motor symptoms. Tremor, bradykinesia, stiffness (rigidity), and impaired balance are the main motor symptoms of Parkinson's disease (postural instability). Mood problems, cognitive dysfunction, pain, sensory dysfunction, and dysautonomia are the most common nonmotor symptoms. Patients with Parkinson's disease frequently experience motor speech problems. More than half of the patients have speech problems, such as very quiet and rushed speaking Speech signal analysis is a popular non-invasive way for diagnosing Parkinson's disease. Clinicians and neuroscientists are interested in noninvasive PD detection and prediction technology.

Furthermore, detecting speech changes in Parkinson's patients would allow for early detection and intervention before the onset of disabling physical symptoms, which would have a significant impact on both patient healthcare system and patient life span as well as quality of life.

Literature Survey

- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. Parkinson's disease is a central nervous system condition that affects the body's motor processes. It's a long-term illness with symptoms that worsen over time. It usually affects the elderly, whose symptoms steadily worsen until they reach a peak. Hearing, walking, speech, and other basic bodily functions can all be affected by the condition. Generic machine learning methods that provide varied degrees of accuracy can be used to analyse this disease. As a result, the best one is picked, as it will provide the maximum level of accuracy in predicting whether or not the disease is present in the patient.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. Different approaches to optimizing the creation of machine learning classification models for the early identification of Parkinson disease were investigated in this study. The goal was to use feature selection techniques to sort the medical measures and select the most

relevant characteristics in order to develop a faster and more accurate model. Reducing the number of characteristics used to develop a model may result in a more efficient machine learning method, allowing doctors to focus on the most relevant measurements to consider. We compared the Filter and Wrapper approaches for feature selection. Then, by calculating the crossover scores for each strategy, we chose a solid machine learning algorithm to predict which technique could aid us.


- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. In this paper, an unique detection approach is proposed.Considering the qualities gathered from the speech of Parkinson's disease signals. Early detection and diagnosis of Parkinson's disease are critical. In terms of illness progression and treatment, this is critical. The dataset for Parkinson's disease used in this investigation was taken from the machine learning repository at UC Irvine. The hybrid.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. So, in this research, we present a new approach for selecting feature sets by comparing performance metrics with other feature sets, such as original feature sets and Principal component Analysis-based feature reduction techniques. To compare the performance indicators, we employed a non-linear based categorization technique. Based on the data, this analysis will assist clinicians in distinguishing the PD group from the healthy group.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. A neural technique based on employing Long-Short Term Memory (LSTM) neural networks is proposed in this paper to diagnose individuals with Parkinson's disease. The temporal patterns of the gait cycle are different for healthy people and sick, according to this study. As a result, the suggested method extracts temporal patterns to distinguish patients from healthy people using a recurrent structure like LSTM, which can assess the dynamic character of the gait cycle. The data used to determine the temporal characteristics of the gait cycle is based on shifting vertical Ground Reaction Force (vGRF), which is recorded by 16 sensors in each subject's shoe soles.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. This necessitates the use of a machine learning model for the early diagnosis of Parkinson's disease. The examination of existing computational intelligence strategies in the field of research employed for PD detection is a precondition for discovering a full proof model. Many present models either focus on a single modality or analyse multiple modalities in a superficial manner. This prompted us to conduct a comparative literature review of four primary modalities
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. In this study, a new rating system was developed to aid in determining the severity of Parkinson's disease. However, a person with identical symptoms does not necessarily have Parkinson's disease. Because Parkinson's disease is an unsolved problem, the study focuses on relevant aspects, medicines, and common approaches used to identify or assess the disease. To address this issue, several methodologies will be employed to research and analyze the early diagnosis of Parkinson's disease. It can be examined with the use of a thorough knowledge of Parkinson's disease. However, the occurrence of several frequent symptoms has not yet been sufficiently characterized to assess the severity of Parkinson's disease.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease.In magnetic resonance imaging, an intensity-based texture segmentation technique for detecting regions with anomalous texture features is provided. Our algorithm was tested on many images from The Parkinson's Progression Markers Initiative (PPMI-database), and the findings show that it is acceptable for the successful identification and extraction of regions of interest whose attributes may be associated to signature traits of Parkinson disease.

- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. Author used the MATLAB framework to analyze the frontal and temporal EEG of Parkinson's disease patients in this paper. Within a particular time frame, the Lyapunov exponent and inverse Lyapunov exponent for both PD and healthy participants were determined. The Lyapunov exponent for the temporal region of the brain is less than that for the frontal, and the inverse Lyapunov exponent is reverse order of the brain in PD patients. This means that in healthy people, the correlations between neurons are higher in the frontal region than in people with Parkinson's disease.
- In this paper, authors have introduced a system which is useful for detection of Parkinson's disease. The difficulty of distinguishing between Essential and Parkinson's tremor is discussed in this article. A clinical study was conducted to achieve this goal, in which a group of volunteers, including Essential and Parkinson's tremor patients, underwent a series of pre-defined motion patterns, during which a wearable sensing setup was used to measure their lower arm tremor characteristics from multiple points .To provide a comparative study and evaluate the potential of using machine learning to accurately identify between different tremor types, extracted features from the acquired accelerometer signals were used to train classification algorithms.

Existing System: Clinicians usually make clinical decisions based on their intuition and experience, rather than using the database's knowledge-rich data. Unintentional biases, errors, and extravagant medical expenses are all consequences of this strategy, all of which have an impact on the quality of care provided to patients.

- As part of the Internet of Things, wearable technologies are being used. Handwriting was employed as a marker for Parkinson's disease diagnosis using a support vector machine.
- Using 3D visualization techniques to provide a simple tool for assessing the performance of Parkinson's disease patients Using data mining techniques, visually assisted tracking of PD patients' performance.

Proposed System: Parkinson's disease (PD) is a neurological disease that has progressed to an advanced stage.

Figure: Proposed System

In the early stages of Parkinson's disease, roughly 90% of people with the disease have speech problems. As a result, speech features were used to classify this condition in this study. Jitter, shimmer, basic frequency parameters, harmonicity parameters, Recurrence Period Density Entropy (RPDE), Detrended Fluctuation Analysis (DFA), and Pitch Period Entropy are some of the most well-known speech aspects employed in PD research (PPE). Those characteristics were dubbed baseline characteristics in this study.

Problem Statement: Medical observations and assessment of clinical indicators, including the identification of a variety of motor symptoms, are often used to diagnose Parkinson's disease (PD). Traditional diagnostic procedures, on the other hand, may be vulnerable to subjectivity because they rely on the assessment of motions that are sometimes subtle to human sight and hence difficult to define, potentially leading to misdiagnosis. Meanwhile, early non-motor symptoms of Parkinson's disease can be minor and be caused by a variety of other illnesses. As a result, these symptoms are frequently missed, making early PD diagnosis difficult.

Advantages: It's critical to correctly diagnose Parkinson's disease so that sufferers can receive the right treatment and counselling. Furthermore, recognizing Parkinson's disease early is critical since therapies like levodopa/carbidopa are more successful when given early in the disease. Non-pharmacological treatments, such as increased exercise, are also easier to implement in the early stages of Parkinson's disease and may help halt disease development.

Disadvantages: The Random Forest Classifier had the maximum accuracy of 83.12 percent. The diagnosis of bradykinesia and tremor, according to the data provided in section V, leads to tangible results for the early detection of this disease. Furthermore, it was discovered that the detection accuracy might be improved in two ways: by incorporating ensemble algorithms such as bagging, boosting, and voting, and by expanding the dataset size.

CONCLUSION

Artificial intelligence and medical research have formed a partnership that aids in the treatment of ubiquitous disorders such as Parkinson's disease. For early detection of Parkinson's disease, symptoms such as Bradykinesia, Tremor at rest, Rigidity, and Voice Impairment can be noticed. There is no specific medical method or diagnosis for a person's parkinsonism, which also applies to bioinformatics. Strong techniques like Machine Learning, on the other hand, have sped up the process of detecting Parkinson's disease by making it more costeffective and efficient. Machine learning can help doctors detect Parkinson's disease.

Future Scope: The study used a single model for each purpose to detect and assess the severity of Parkinson's disease. The research can be expanded by utilizing additional models and comparing the results to establish the most optimized and efficient models for disease detection and determining the degree of disease in the patient.

REFERENCES

- A. Kazeminejad, S. Golbabaei and H. Soltanian-Zadeh, "Graph theoretical metrics and machine learning for diagnosis of Parkinson's disease using rs-fMRI," 2017 Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, pp. 134-139, 2017
- C. W. N. F. C. W. Fadzal, W. Mansor, L. Y. Khuan and A. Zabidi, "Short-time Fourier Transform analysis of EEG signal from writing", 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, pp. 525-527, Mar. 2012.
- D. R. Mehra, "Power Spectrum Estimation using Welch method for various Window techniques", International Journal of Scientific Research Engineering & Technology, vol. 2, pp. 389–392, Sep. 2013.
- G. Ma, L. He, C.-T. Lu, P. S. Yu, L. Shen, and A. B.Ragin, "Spatio-Temporal Tensor Analysis for Whole-Brain fMRI Classification", SDM, 2016.
- J. Jankovic, "Parkinson's disease: Clinical features and diagnosis", Journal of Neurology, Neurosurgery & Psychiatry, vol. 79, no. 4, pp. 368–376, 2008.
- M. Lawton, Y. Ben-Shlomo, M. T. May, and et al., "Developing and validating Parkinson's disease subtypes and their motor and cognitive progression", Journal of Neurology, Neurosurgery & Psychiatry, Dec.2018.
- M. Z. Parvez and M. Paul, "Epileptic seizure detection by analyzing EEG signals using different transformation techniques", Neurocomputing, vol. 145, pp. 190–200, 2014.
- Neurocomputing, vol. 145, pp. 190–200, 2014. NiharRanjan, Rajesh S. Prasad "Author Identification in Text Mining for used in Forensics" ISSN 2321- 9637, Volume 1, Issue 5, December 2013, pp. 568-571
- NiharRanjan, Rajesh S. Prasad "Author Identification in Text Mining for used in Forensics" ISSN 2321- 9637, Volume 1, Issue 5, December 2013, pp. 568-571
- R. Prashanth, S. Dutta Roy, P. Mandal, and S. Ghosh, "High-Accuracy Detection of Early Parkinson's Disease through Multimodal Features and Machine Learning", International Journal of Medical Informatics, vol. 90, Mar. 2016.
- Z Ghouse, NiharRanjan, N Hiwrale, "A multi-function robot for military application"Imperial Journal of Interdisciplinary Research, 2017
- Z. Wang, A. R. Childress, J. Wang, and J. A. Detre, "Support vector machine learning-based fMRI data group analysis", NeuroImage, vol. 36, no. 4, pp. 1139–1151, 2007.
- ZubairGhouse, NishikaHiwrale, NiharRanjan, "Military Robot for Reconnaissance and Surveillance using Image Processing" International Research Journal of Engineering and Technology, Volume: 04 Issue: 05, May -2017
