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ARTICLE INFO  ABSTRACT 
 
 

Precipitation is important in maintaining the environment and life of living beings. Through their 
studies and increasingly accurate forecasts, we can reduce the impacts related to floods, environmental 
disasters, and losses in the agricultural and tourism sectors. However, climate change has made the 
analysis of this variable difficult. In this article we will present an hourly rain forecast model using 
Artificial Neural Networks, using the information on instantaneous, maximum and minimum 
temperature, relative humidity, wind, and precipitation through the automatic weather stations of the 
Instituto Nacional de Meteorologia, located in the city from Manaus/AM. First, a study was carried out 
to determine the network architecture best suited to the data set. Numerous combinations between the 
training and transfer functions were performed until finding the functions that presented the best error 
values. The predictions made with the model showed satisfactory results, showing that the model was 
able to reproduce the same behavior of the precipitation observed for the predicted day, presenting 
practically the same totals, especially on the rainiest days. On the other hand, in cases where the 
observed showed a characteristic of convective precipitation, the model was not able to capture the 
intensity, which shows that it must be tested with other atmospheric variables. 
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INTRODUCTION 
 
Precipitation is one of the meteorological variables that plays an 
important role in conserving the natural environment, maintaining the 
hydrological cycle and water supply sources in urban areas 
(SCHMIDT & MATTOS, 2013; SILVA et al., 2021; NETO et al. ., 
2022; MAUD 2022). However, the precipitation regime has been 
modified by several factors, but mainly by climate change (HUANG 
et al., 2021; GEORGESCU et al., 2021; BACK et al., 2022). Studies 
on global warming and changes in the state of the world climate 
indicate that precipitation is the most significant variable in the 
process, however, knowing the behavior of precipitation in a given 
region and its variation over the period can be a useful tool for 
managers. public for actions during periods of extreme events, in 
addition to the actions necessary for possible solutions to climate 
change (CHOWDHUR et al., 2016; GOLDBERG et al., 2020; 
GOMES et al., 2021). However, climate variability is the main 
justification for continuing our efforts toward more accurate climate 
prediction, in the health, energy production, and agriculture sectors 
(HELLDÉN, et al., 2021; EBI et al., 2022; KUGO et al. 2022).  
 

 
 
 
For these reasons, in recent decades efforts have been made to create 
models and tools that can estimate and predict precipitation in oceanic 
and continental areas (LIU et al., 2017; SUN et al., 2018). In Soko et 
al., (2021), a review is carried out on the importance of weather 
radars. The authors point to radars as an effective tool for estimating 
and predicting precipitation due to their temporal and spatial 
resolution, and their ability to provide practically real-time rainfall 
data, being able to assist in hydrological and meteorological 
applications (ZANG et al., 2018). Satellite precipitation estimation 
models are powerful tools. The TRMM mission (Tropical Rainfall 
Measuring Mission) (KUMMEROW et al., 1998; KUMMEROW et 
al., 2000; KIDD et al., 2017) has provided precipitation products for 
many years with high temporal and spatial resolution, being replaced 
by GPM precipitation products(Global Precipitation Measurement). 
KIRSCHBAUM et al., 2017; HUFFMAN et al., 2019). In addition to 
mathematical prediction models, COSMO-CLM (Consortium for 
Small-scale Modeling) (ROCKEL et al., 2008; MUGUME et al., 
2018; PAUL & SURAHAMANYAM, 2021; BAUR et al., 2022), 
WRF (POLITI et al., 2021; ZHU, et al., 2021; PIERSANTE, et al., 
2021; DEVI et al., 2021), and precipitation estimation, some 
computer models such as Artificial Neural Networks (ANNs) can 
reproduce meteorological variables (BENALI et al., 2019; 
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CARVALHO & DELGADO, 2022) and hydrolog
STRECTH, 2019; ALTHOFF et al., 2021; KARUNANAYAKE 
al., 2021; LOPES et al., 2022).Because it is a self
ANNs, unlike traditional models, through examples and functional 
relationships between data and  networks can improve, being suitable 
for problems that have substantial data even if the solutions are of 
great complexity such as the forecasts. (ZHANG 
Sonderby et al., (2021) the authors created an ANN
called MetNet, which predicted precipitation for 8 hours and a 
temporal resolution of 1 km2, producing probabilistic maps of the 
variable through satellite and radar images. Chen 
develop two ANN models, where the first trains the network with 
precipitation points, and surface radar reflectivity, while the second 
model adds precipitation from the TRMM satellite, showing the 
hybrid ANN model a Promising proposal for predicting precipitation. 
However, in Li et al., (2021) the authors used five years of data to 
train a nonlinear autoregressive RA, to predict precipitation for 48 
hours, showing that the model is effective to pred
urban areas. . While, in Pan et al., (2021) RNs were used as an 
alternative to downscaling models. The use of different precipitation 
estimation techniques, such as multiple linear regression, ANN and 
Spline interpolation, and satellite data (GPM-IMERG), in addition to 
the identification of the cloud and its morphology, shows that hybrid 
models allow greater geographic coverage (SHARIFH 
Inspired by the families of deep learning models for binary 
segmentation, U-Net (RONNEBERGER et al., 2015) and SegNet
(BADRINARAYANAN, et al., 2017; SHI ET AL
al., (2020) presented the colovional RNA model to estimate 
precipitation every 60 min, using radar data, called RainNet v. 1.0, 
despite the limitation for intense precipitation, the model showed 
great promise in the studies of RNA hybrid models.
al., (2018) uses a statistical downscaling model based on a long
and short-memory recurrent ANN to capture the Spatio
dependencies on local precipitation, the results showed that the 
coupled long-term memory recurrent ANN the autoencoder has the 
best performance compared to other existing methods, in addition to 
capturing precipitation extremes (MANDAL, SRIVASTAV AND 
SIMONOVIC, 2016; KLINSDONK, et al., 2022).
article, I will show the development of an ANN model using 
meteorological variables collected through automatic surface stations 
to predict the precipitation punctually in a region. 
 

MATERIALS AND METHODS
 
The ANN model proposed in this article used a set of atmospheric 
variables measured on the surface collected through the automatic 
surface meteorological station of the Instituto Nacional de 
Meteorologia (INMET- Brazil), located in the city of Manaus/AM. 
INMET's Web platform provides daily data which has undergone 
strict quality control, with outliers, absence of information, and others 
being removed. The meteorological variables chosen to compose the 
RNA training base total 20 years of hourly information on 
instantaneous temperature (oC), maximum temperature (
minimum temperature (oC), relative humidity (%), wind (m /s), and 
precipitation (mm). For the development of this Intelligent System
the Neural Network Toolbox Toolbox (NNTool
MATLABR2016a® (Matrix Laboratory) was u
software, it was possible to test the various types of RNAs in this 
Toolbox. The procedures and directions applied in the conception of 
the ANN, for this, the method will be presented in three stages, called 
assembly, training, and forecast. The assembly phase is the most 
important, as it defines the type of network, architecture (layers and 
hidden neurons), activation functions, propagation type, learning 
algorithm, and other parameters. Subsequently, the network training 
phase was initiated, it is in this phase that the ANN training/learning 
takes place, where it captures all the relevant characteristics of the 
selected data set, such as the peaks, randomness, and seasonality of 
the information. It is at this stage that the data is divided
of the information available for the model to perform the network 
learning, 15% is saved to carry out the validation, and 15% in the 
network test. In this process, the main neurons are defined, called 
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MATLABR2016a® (Matrix Laboratory) was used. Through the 
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ed, it is in this phase that the ANN training/learning 

takes place, where it captures all the relevant characteristics of the 
selected data set, such as the peaks, randomness, and seasonality of 
the information. It is at this stage that the data is divided so that 70% 
of the information available for the model to perform the network 
learning, 15% is saved to carry out the validation, and 15% in the 
network test. In this process, the main neurons are defined, called 

active neurons, the weight of these neuron
others will adapt to them. The statistical parameters obtained during 
the training were analyzed and thus it was possible to choose the 
parameters that best adapt to the data set.
training of the network, and analysis of the parameters, the best 
architecture of the ANN was chosen. Thus, with the chosen model, 
precipitation predictions and corrections of the values found by the 
network were performed. Still at this stage, the model was validated 
by comparing the precipitation values observed in the period from 
January to May 2022, and the rain predicted by the RNA model 
tested. 
 

RESULTS  
 
The network used in this article was a “
neurons from the upstream layer communicate with the 
layer without feedback (Figure 1). The ANN architecture consists of 
five input variables that transmit stimuli to the neurons of the main 
layer, where the sum and activation function has the purpose of 
performing the processing of all inputs, wh
verifies if the neuron is part of a neuron stimulus or inhibition 
process. And finally, all layers have the same direction, the output in 
Figure 1 is shown by the presence of only one neuron, which has the 
role of providing the answer to the system, which in this case,
daily precipitation totals. 
 

Figure 1. Graphic representa

Network training is one of the most important phases in the model 
creation process, as it is in it that, according 
weights are corrected to minimize this error. Basically, the objective 
of the training is the reduction of global error, and the minimization 
of the error is one of the decisive factors for the correct modeling.
ANN training, combinations for twelve types of training functions 
Levenberg-Marquardt (trainlm), Bayesian Regularization 
BFGS Quasi -Newton (trainbfg
rainrp), Scaled Conjugate Gradient 
Conjugate Gradient (traincgb), Fletcher 
(traincgf), Polak-Ribire (traincgp), One Step Conjugate Gradient 
Secant (trainoss), Variable learning rate descending gradient 
(traingdx), Gradient descent with Momentum (traingdm)
descending (traingd'). The training functions were combined with the 
three transfer functions, “purelin”, “tansig” and “logsig”, totaling 36 
combinations. Determined the structural parameters of the ANN used 
during the simulation. In addition to t
also performed to define the network architecture by varying the 
number of neurons in the main and hidden layer, which was 
determined by trial and error. Although the training shows good 
results, there is a very significant difference in the error presented for 
each transfer function for the same type of network, this is due to the 
absence of observations in some hours of the day, but this does not 
disqualify the results presented by the ANN, as can be verified 
through the values of Root Mean Square Error (ERRORMSE) and 
Mean square Error (MSE), presented in Tables 2 and 3, statistical 
variables which are indicators of ANN performance.
 
One of the objectives of the supervised training process of an ANN is 
to adjust the weights and thresholds.
find the most ANN model and the transfer function that best fits the 
data set used, being the basis for choosing the lowest possible value 
for errors (MSE). Usually, the MSE value starts high during the first 
iterations and as the ANN starts to converge the value stabilizes, and 
the closer to zero this stabilization happens, the better the ANN 
performance.  
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Figure 2 graphically presents the MSE values, where on the 
horizontal axis we relate the model type and the blue, orange, and 
gray color, the Purelin, Transing,and Logsig transfer equations, 
respectively. Note that for all combinations performed, the Transing 
transfer equation presents the lowest MSE value during training, and 
at the same time, Transing and the tranlm equation were the best 
evaluation, around 0.50. Despite this, other tests must be carried out 
so that this choice can be made official. ERRORMSE, like the other 
statistical analyzes presented, is also used to show the performance of 
the types of ANNs tested and the transfer functions available (see 
Table 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is noted that the good performance and choice of parameters of the 
forecast ANN is also obtained through the lower values of the 
ERRORMSE generated by the combinations. Thus, it appears that 
among the combinations performed during the ANN training process, 
the one that presented the lowest error values was the Trainlm 
equation and the transfer equation - tansig, reaching 0.71. On Figure 
3, it is shown ANN performance, where the blue curve shows the 
adjustment of the network training, while the validation is represented 
by the green curve, and the test the red curve, it is noted that the best 
performance of the curves and the test was possible through 26 
evolutions (Epochs).  

Table 1. Calculated MSE values of each combination of the Training functions (FTrain) with the Transfer functions (FTrans) after the simulations 

 
MSE ERROR 

Transfer 
Function  

Transfer Function _ Transfer Function 
_ 

Transfer Function _ 
purelin tansig logsig purelin tansig logsig 

trainl 2.91 0.50 0.75 trainl 1.71 0.71 0.87 
trainbr 2.91 105.00 0.92 trainbr 1.70 10.25 0.96 
trainbfg 2.91 1.72 2.78 trainbfg 1.71 1.31 1.67 
trainrp 2.95 12.64 3.41 trainrp 1.72 3.56 1.85 
trainscg 74076.92 3.41 3.41 trainscg 272.17 1.85 1.85 
traingb 162.33 3.41 3.42 traingb 12.74 1.85 1.85 
traincgf 539869.27 3.41 3.42 traincgf 734.76 1.85 1.85 
traincgp 119065.17 3.41 3.42 traincgp 345.06 1.88 1.85 
trainoss 2.97 3.41 3.41 trainoss 1.72 1.85 1.85 
trainingdx 26325722.85 78.75 3.41 trainingdx 5130.86 8.87 1.85 
training 5759799655.07 3170.15 3.41 training 75893.34 56.30 1.85 
training 5759799655.08 3170.15 3.41 training 75893.34 56.30 1.85 

 

 
 

Figure 2. Statistical parameters between the transfer functions: a) MSE; b) ERROR 
 

 
 

Figure 3. Best Performance Validation Value 

 

a) b) 
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The epochs represented by the circumference mean the stopping 
criteria of the ANN training when the best results are found (best). 
After the training phase, the ANN is prepared, it will be tested, and 
thus it will be possible to evaluate the network's ability to infer a 
coherent class to the training performed. At the same time, there is a 
major limitation in models based on neuron learning, which according 
to Haykin (1999) models have a single performance measure. But it is 
possible to measure this performance through statistical regression. 
Despite the excellent results obtained during the training, presented 
above, it is observed that after some attempts to train the network, the 
validation presented values above 1, (1.999) an expected result due to 
the size of the set of input values for the training. and network testing. 
The simulations and statistical analyzes of the network, present a 
significant degree of reliability in the specification of the Artificial 
Neural Network model for the prediction of precipitation in the very 
short term, obsessing the descent or adjustment of the slip curve, at 
each epoch performed we realize that the convergence time increases, 
according to the graph the algorithm took 26 epochs to find the best  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convergence state, demonstrating that this is the optimal state of 
convergence of the algorithm to reach a constant in the learning line. 
It can be used as a tool to aid decision-making. Figure 3 shows the 
Mean Square Error (MSE) curves between the input and output data 
set of the neural network. The curve in red color illustrates the test 
dataset, the curve in blue one, the training data, and the curve in green 
one, the validation dataset. The dashed line is the best value found. 
Data converge quickly (in 26 epochs). After training and choosing the 
ANN parameters, predictions and validations were performed, thus 
showing its performance to predict precipitation from surface data. 
Figure 4 presents the analysis between the results obtained and those 
expected during the training phase, which showed around 86% of 
accuracy (Figure 4a). Through the information entered in the ANN 
input, the 15% used to validate the tested network showed that it 
presented a high correlation index, which shows that of the data 
predicted by the ANN, around 82% are strongly correlated (Figure 
4b). To demonstrate the best network test, (Figure 4c) is observed 
with a result closer to 1 when it is considered the best test, 

 
 

Figure 4: a) Regression test between the results obtained versus expected from the ANN: training; b) validation; c) test of the best network; d) joint 
aspects of the network 

 

 
 

Figure 5. Predicted precipitation through the Neural Network compared to observed precipitation in mm/hour for 01/01 and 02/08/2022 

 

a) b) 
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corroborating the network efficiency by (Figure 4c), when we analyze 
all aspects of the network together already presented in (figures 4a, 
4b, and 4c) with a correlation value close to 1 with a correlation index 
of 82.2%. In a second moment, the performance of the model was 
tested to predict the daily precipitation in the city of Manaus using 
real-time data during the months of January to May 2022. In Figure 
5a the forecast is represented by the blue line, while the orange line 
shows the observed precipitation on an automatic weather station. 
Applying the model, during the month of January it was found that 
the model showed excellent performance in predicting the behavior of 
rain, despite having a small record during the morning (09:00), while 
the observed rain was zero, but on the other hand, side overestimated 
the afternoon rain (14:00-15:00). It is worth noting that although the 
Amazon region is characterized by high rainfall, it is called the 
Amazon summer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5b shows that the rain forecast model using ANN was able to 
reproduce the behavior of the observed precipitation curve (orange 
line) in the month of February. It is noted that this similarity also 
occurs with the rainfall totals each hour, especially at 20:00, when a 
peak of precipitation occurred. On the other hand, it is noted that in 
the two months tested the model showed a small peak at the end of 
the night, a fact that does not appear in the observed data. When 
analyzing the transition months from the rainy to the dry season, the 
model overestimated at almost all times, in addition to the diurnal 
cycle curve showing practically no similarity with the observation 
curve. Figure 6a, a larger margin of error with the forecast (PREV) x 
observed (OBS) where the neural network showed a small instability 
in the forecast of 15:00 (UTC) with PREV value. 6.45 mm, and it was 
OBS. 0.0 mm of precipitation, however, we observed at 18:00 (UTC) 

and 19:00 (UTC) that the network stabilized and had PREV, 
respectively. 2.35 mm and NOTE. 4.2 mm - PREV. 1.75 mm and 
NOTE. 4.8 mm, confirming the reliability of the RN. When observing 
Figure 6b, the neural network can be seen following the observed 
precipitations with overestimated values of the values in mm. We will 
highlight in Figure 09 the precipitation forecast for 12:00 (UTC) with 
PREV values. 9.4 mm and NOTE. 1.2 mm, as well as in the 
precipitation forecast for 14:00 (UTC) with PREV values. 8.5 mm 
and NOTE. 36.4 mm, however, the network was assertive with the 
precipitation forecast, requiring a new analysis of the values that may 
have passed through this distortion as the precipitation forecast 
involves numerous variables. We observe in Figure 6b, a greater 
margin of error with the forecast x observed where the neural network 
presented a small instability in the forecast of 15:00 (UTC) with value 
PREV. 6.45 mm, and it was OBS. 0.0 mm of precipitation, however,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we observed at 18:00 and 19:00 the network stabilized and had 
PREV, respectively. 2.35 mm and NOTE. 4.2 mm - PREV. 1.75 mm 
and NOTE. 4.8 mm, confirming the reliability of the RN. When 
looking at Figure 7, we can see the neural network following the 
observed rainfall with overestimated values of the values in mm. We 
will highlight in Figure 7 the precipitation forecast for 12:00 (UTC) 
with PREV values. 9.4 mm and NOTE. 1.2 mm, as well as in the 
precipitation forecast for 14:00 (UTC) with PREV values. 8.5 mm 
and NOTE. 36.4 mm, however, the network was assertive with the 
precipitation forecast, requiring a new analysis of the values that may 
have passed through this distortion as the precipitation forecast 
involves numerous variables. For Figure 7, the linear pattern was 
maintained and the network proved to be efficient in predicting 
precipitation with a time of increase between 9:00 (UTC) and 10:00 

 
 

Figure 6. Prediction of precipitation generated by ANN (blue) and observed precipitation (orange) in mm/hour: a) March 07, 2022; b) April 2, 2022 
 

 
 

Figure 7. Prediction of precipitation generated by RNA (blue) and observed precipitation (orange) in mm/hour on March 7, 2022 

 

a) b) 
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(UTC) underestimating the values, PREV. 7.5 mm and NOTE. 12.4 
mm and respectively PREV. 4.6 mm and NOTE. 10.6 mm. 
 

FINAL CONSIDERATIONS 
 
This article shows the construction of a model of Artificial Neural 
Networks of the feedforward type to predict the hourly precipitation 
punctually in the city of Manaus/AM. First, tests were performed to 
determine the architecture and training of the network, which was 
defined with seven neurons in the first layer, five neurons in the 
hidden layer, and one neuron in the output layer. It was determined 
that the ideal network uses the training and transfer functions, “ 
transing ” and “ tranlm ”, respectively. The training and validation of 
the network showed that it shows a strong correlation between 
training (85%) and prediction (82%). The tests carried out with the 
model during the period from January to May 2022, showed that it 
can represent the diurnal cycle of observed precipitation and was able 
to reproduce the total precipitation every hour during the rainy 
months (January and February), but during the transition from dry to 
wet season, the model overestimated. 
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